கணிதமே, உன்னை நான் ஆராதிக்கிறேன்!

January 9, 2013

நாம் ஒரு கோளத்தை (sphere) ஒரு கனசதுரத்துக்குள் (cube), முன்னதை நசுக்காமல், பின்னதைப் பிதுக்காமல் – அடைக்கிறோம் என்று நினைத்துக் கொள்ளுங்கள். அதாவது ஒரு டென்னிஸ் பந்தை, அதற்கென்றே வடிவமைக்கப்பட்ட ஒரு சதுர டப்பியில் (டப்பாவின் பெண்பால்) வைக்கிறோம் எனவும் நினைத்துக் கொள்ளலாம்.

இப்போது,  கிட்டத்தட்ட அந்தக் கோளத்தின் விட்டம் = டப்பியின் ஒரு ஓரத்தின் நீளம்தானே?

மேலும், விகிதாச்சாரமாக (proportion) இதனைப் பார்க்கும்போது, அந்தக் கோளத்தின் கொள்ளளவு, அது இருக்கும் டப்பியின் கொள்ளளவில் மிகப்பெரிய பகுதியாகத்தானே இருக்க வேண்டும், அல்லவா?

ஃப்பூ! இதென்ன பெரிய விஷயம் என்கிறீர்களா? என்ன கிழவா சொல்ல வருகிறாய் என்று கேட்பீர்கள் கூட! இருங்கள்…

ஆனால் இந்தப் பந்தின் கன அளவு, மிக மிக மிகச் சிறியதாக, விகிதாச்சாரத்தில் அதன் டப்பியின் கன அளவின் சிறிய பின்னமாக  இருக்கவும் நிச்சயம் முடியும்.

இதனைப் பற்றி மிகப்பல வருடங்கட்குமுன் முதலில் படித்தபோது, சிந்தித்தபோது, எனக்கும் மிக மிக ஆச்சரியமாக இருந்தது,  இப்போதும் இருக்கிறது கூட.

… இது எப்படி சாத்தியமென்றால் … முப்பரிமாணங்களுக்கு மேலே இது ஒரு சுளுவான விஷயம். இதற்கு அழகான ஆனால் முடிச்சுகள் மிகுந்த வியாக்கியானங்கள் இருக்கின்றனதான்… அவற்றைப் படித்துப் பொருள்படுத்திக் கொள்வதற்கும் பயிற்சி வேண்டும்

நமக்கு முப்பரிமாணமாக அல்லது இரட்டைப்பரிமாணங்களினூடே சிந்திப்பதுதான் முடிகிறது.  ரஷ்ய கணித / அறிவியல் புத்தகங்களுக்கு அறிமுகம் கிடைக்காது ஆபாசமான தமிழ் நாட்டுப் பாட நூல் நிறுவன புத்தகங்களை மட்டுமே பத்தாவதுவரை படித்து வளர்ந்த நானும் கல்லூரியில் சேரும்வரை இப்படித்தான் நினைத்துக் கொண்டிருந்தேன். (இப்போதைய பாடப் புத்தகங்கள் எவ்வளவோ தேவலைதான்!)

…. இந்தச் சூழலில், பிரையன் ஹேய்ஸ் எனும் விஞ்ஞானி அண்மையில் இது பற்றி ஒரு அழகான கட்டுரை எழுதியிருக்கிறார் – நம் அனைவருக்கும் விளங்கக் கூடிய ஆங்கிலத்தில், ஜல்லியடிக்காமல்: (அறிவியலை, கணிதத்தை அறிமுகம் செய்யும் எந்தக் கட்டுரையும், இப்படி இருந்தால் எவ்வளவு அழகாக இருக்கும்!)

The area enclosed by a circle is πr2. The volume inside a sphere is 4/3πr3. These are formulas I learned too early in life. Having committed them to memory as a schoolboy, I ceased to ask questions about their origin or meaning. In particular, it never occurred to me to wonder how the two formulas are related, or whether they could be extended beyond the familiar world of two- and three-dimensional objects to the geometry of higher-dimensional spaces. What’s the volume bounded by a four-dimensional sphere? Is there some master formula that gives the measure of a round object in n dimensions?

Some 50 years after my first exposure to the formulas for area and volume, I have finally had occasion to look into these broader questions. Finding the master formula for n-dimensional volumes was easy; a few minutes with Google and Wikipedia was all it took. But I’ve had many a brow-furrowing moment since then trying to make sense of what the formula is telling me. The relation between volume and dimension is not at all what I expected; indeed, it’s one of the zaniest things I’ve ever come upon in mathematics. I’m appalled to realize that I have passed so much of my life in ignorance of this curious phenomenon. I write about it here in case anyone else also missed school on the day the class learned n-dimensional geometry.

மேலும் தொடர விருப்பமுடையவர்கள் முழுக் கட்டுரையையும் படியுங்கள்.

இந்த விஷயத்தை நான் ஐந்தாறு வருடங்களுக்கு முன் விவாதித்திருக்கிறேன் – ஆனால் அது  நடந்தது ஒரு அற்புதமான பெங்களூர் சார் மாண்டிஸோரி பள்ளியில் – குழந்தைகள் எல்லோரும் நகரம் சார்ந்தவர்கள், ஆகவே அவர்களுக்கு விரிக்கப்பட்ட சாளரங்கள், கதவுகள், சாத்தியக் கூறுகள்  (எக்ஸ்போஷர்) அதிகமாக இருந்திருக்கலாம், ஆகவே அவர்கள் இதனைப் புரிந்து கொண்டிருக்கலாம்  என நினைத்தேன்.

ஆனால் அண்மையில் இந்தக் கட்டுரையை, நான் என் ஒன்பதாம் வகுப்பு மாணவர்களுடன்  (இது ஒரு கிராமப் பள்ளி, ஆங்கில வழியானாலும் – மாணவர்கள் அனைவரும் ’முதல் தலைமுறை’ கல்வி பயிலுபவர்கள், தகப்பன்கள் குடித்துவிட்டு அலைபவன்கள்) விவாதிக்க முடிந்தது என் பாக்கியம்.

ஆர்வமுள்ள குழந்தைகளுக்கு ஒரு கோடி காட்டினால் கூடப் போதும் – அவர்கள் ‘வேகமைய்யா வேகம்’ என்று ’விண்ணையும் விழுங்கிச் சூலுறும்’ மனவுறுதி மிக்கவர்கள். இந்த விதிக்கு மாற்றான ஒரு குழந்தையைக் கூட இன்னமும் நான் பார்க்கவில்லை!

=-=-=-=-=

நல்லவேளை. டிஸ்கவரி, நேஷனல் ஜியாக்ரஃபிக் போன்ற அரைகுறை அறிவியல், அரைவேக்காட்டு டாகுமெண்டரி சேனல்களுக்கு நடுவிலும், அவற்றுக்கு அப்பாலும் – நிறைய விஷயங்கள் இருக்கின்றன, நாம் சந்தோஷப் படுவதற்கு.

இந்தச் சாத்தியங்களுக்கு, நாம் இணையத்திற்கு நன்றிக் கடன் பட்டிருக்கிறோம் அல்லவா?

One Response to “கணிதமே, உன்னை நான் ஆராதிக்கிறேன்!”

  1. surya Says:

    I feel, I am at loss for not being in that class room. Looking forward to get some more like this,
    -surya


மேற்கண்ட பதிவு (அல்லது பின்னூட்டங்கள்) குறித்து (விருப்பமிருந்தால்) உரையாடலாமே...

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s